Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates.
نویسندگان
چکیده
We examined the effects of increased transpiration demand on xylem hydraulic conductivity and vulnerability to cavitation of mature ponderosa pine (Pinus ponderosa Laws.) by comparing trees growing in contrasting climates. Previous studies determined that trees growing in warm and dry sites (desert) had half the leaf/sapwood area ratio (A(L)/A(S)) and more than twice the transpiration rate of trees growing in cool and moist sites (montane). We predicted that high transpiration rates would be associated with increased specific hydraulic conductivity (K(S)) and increased resistance to xylem cavitation. Desert trees had 19% higher K(S) than montane trees, primarily because of larger tracheid lumen diameters. Predawn water potential and water potential differences between the soil and the shoot were similar for desert and montane trees, suggesting that differences in tracheid anatomy, and therefore K(S), were caused primarily by temperature and evaporative demand, rather than soil drought. Vulnerability to xylem cavitation did not differ between desert and montane populations. A 50% loss in hydraulic conductivity occurred at water potentials between -2.61 and -2.65 MPa, and vulnerability to xylem cavitation did not vary with stem size. Minimum xylem tensions of desert and montane trees did not drop below -2.05 MPa. Foliage turgor loss point did not differ between climate groups and corresponded to mean minimum xylem tensions in the field. In addition to low A(L)/A(S), high K(S) in desert trees may provide a way to increase tree hydraulic conductivity in response to high evaporative demand and prevent xylem tensions from reaching values that cause catastrophic cavitation. In ponderosa pine, the flexible responses of A(L)/A(S) and K(S) to climate may preclude the existence of significant intraspecific variation in the vulnerability of xylem to cavitation.
منابع مشابه
Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance.
In the Pacific north-west, the Cascade Mountain Range blocks much of the precipitation and maritime influence of the Pacific Ocean, resulting in distinct climates east and west of the mountains. The current study aimed to investigate relationships between water storage and transport properties in populations of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) adapted to ...
متن کاملInteractive effects of elevated CO2 and temperature on water transport inponderosa pine.
Many studies report that water flux through trees declines in response to elevated CO(2), but this response may be modified by exposure to increased temperatures. To determine whether elevated CO(2) and temperature interact to affect hydraulic conductivity, we grew ponderosa pine seedlings for 24 wk in growth chambers with one of four atmospheric CO(2) concentrations (350, 550, 750, and 1100 pp...
متن کاملVulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis).
BACKGROUND AND AIMS It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. METHODS A series of t...
متن کاملContrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species
We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibite...
متن کاملMexican conifers differ in their capacity to face climate change
The recent massive dieback of forest trees due to drought stress makes assessment of the variability of physiological traits that might be critical for predicting forest response and adaptation to climate change even more urgent. We investigated xylem vulnerability to cavitation and xylem specific hydraulic conductivity in seven species of three principal conifer genera (Juniperus monticola, Ju...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 20 13 شماره
صفحات -
تاریخ انتشار 2000